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Abstract — As the attractiveness of social networking sites continues to grow, rumors are also on 

rising respectively. Over the last few years, social networking and information-sharing microblogging 

websites such as Twitter and Sina Weibo have gained popularity. Unsolicited content, such as social 

spam, has also been exploited by spammers to overwhelm most users unfairly. In contrast to existing 

work, this paper uses a novel graph-based approach for spam detection. The problem of graph 

summarization has practical applications involving visualization and graph compression. As graph-

structured databases become popular and prominent, summarizing and compressing graph-structured 

databases can become more and more valuable. Our experimental results demonstrate the usefulness 

and efficiency of our proposed strategy. The accuracy of the graph is considered before and after Graph 

Summarization using Multi Nominal NB and then compared with other machine learning algorithms. 

Various algorithms are considered, and it is found that Multi Nominal NB gives the lowest training 

time and the highest accuracy. The training time of Multi Nominal NB is found to be 0.55 sec before 

graph summarization. After graph summarization, the training time is optimized to be 0.02 seconds, 

and the accuracy value is 96.64%.    
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I. INTRODUCTION 

When it comes to representing data and their interactions, graphs are employed in a wide range of 

applications. Chemical compounds, biological networks, online graphs, communication networks, 

social networks, and other types of data models are examples of data models represented by graphs. 

Science has taken an interest in graph theory and its applications [1], and in particular, research on 

graph matching is summarized here which describes variances across issues, general and specialized 

solution approaches, evaluation procedures, and future research possibilities [2]. When it comes to 

strategies that apply to broad graphs with semantic properties, the survey places a strong emphasis on 

those techniques. 

Numerous applications today produce gigantic networks including millions of nodes and edges on a 

vast scale, and much study on the Tera-scale graphs in terms of their engineering and theory. [3]. To 

be more specific, graphs with enormous amounts of data and a quick rate of expansion are in front of 

us; this is not a good thing. According to the news site Yahoo, Facebook has 1.11 billion members in 

March 2013, when it had just approximately 1 million members at the end of 2004. The process of 
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responding queries on these enormous graphs takes a long time. As a possible solution to this problem, 

graph summarization has been offered. In recent years, a number of graph summarizing 

algorithms have been presented, can shrink to a smaller one, a large graph by removing its aspects 

while retaining the graph's overall characteristics [4, [5], [6], and [7]. Following that, the smaller graph 

can be used for query response and other purposes. The inaccuracy in the graph is tolerable since it 

results in a shorter response time, which is essential in many applications. 

Graphs have been more essential in various applications and areas, particularly in the management of 

large amounts of data, over the previous few decades. When it comes to graph databases, big data 

analysis is defined as the study of exponentially rising huge interconnected data that is related to 

time. The analysis of large amounts of related data in social networks, as well as the detection of 

synthetic identities, is difficult [11]. 

A native graph database that is open-source and NoSQL, Neo4j is a transactional backend for your 

applications [13],[14] that provides an ACID-compliant transactional backend for your applications. 

A Community Edition and an Enterprise Edition are available for Neo4j. It offers all of the features 

of the Community Edition as well as additional enterprise-level features like as backups, clustering, 

and failover functionality. As a native graph database, Neo4j is characterised by the fact that it executes 

the PGM (property graph model) as efficiently as possible, all the way down to the level of storage [1, 

2]. As a result, the data is stored precisely as it appears on your whiteboard, and the database makes 

use of pointers to explore and traverse the graph[15]. For example, in contrast to graph processing or 

in-memory libraries, Neo4j includes complete database characteristics[16], such as ACID transaction 

conformance, cluster support, and runtime failover, making it ideal for the usage of graphs for data 

in production applications. 

Developing appropriate processing and analytical strategies for dealing with the constant and rapid 

increase of highly interconnected datasets that are both large and complicated is necessitated by the 

development of appropriate processing and analytical procedures. For such datasets, graph 

summarization is a useful technique for compressing and simplifying them. Data reduction, speeding 

up query evaluation, and making it easier to see and analyze a graph are the three main goals of this 

project. Summary graphs are created by applying a sequence of application-specific methods to turn 

graphs into more compact representations while maintaining structural patterns, query answers, and 

specific property distributions. In light of the fact that this problem is similar to numerous areas of 

research into network topologies, a variety of approaches, including clustering, compression, 

sampling, and influence detection, have been presented, most of which are based on statistical and 

optimization methods. Although significant progress has been made in recent years, the topic of graph 

summarization continues to present open research challenges, particularly when dealing with more 

complex graph models, such as property-based models, when defining appropriate quality metrics, and 

when dealing with updates. 

Users choose who to follow on a micro blogging Web site based on their own expertise and experience. 

However, despite the fact that spammers can imitate typical link patterns between their bogus accounts, 

they have little ability to influence the decisions of actual users. Such links are regarded as a reliable 

source of information for spammer detection by our team. In this article, we will discuss how to identify 

spammers based on the links they use. Spammers follow legitimate users since it is both logical and 

important for them to gain the attention of legitimate users and distribute spam. On the other hand, 

there have been conflicting reports on whether spammers would establish connections with other 

spammers. Researchers Zhu et al. [12] discovered that spammers and legitimate users are segregated 
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on Renren, a social networking site that is similar to Facebook. When 

it comes to Twitter, however, Yang et al. [12] discovered the polar opposite: spammers tend to be 

networked, maybe in an attempt to mimic natural connection patterns. The two networks were treated 

differently as a result of this. As a result, distinct spammer detection techniques were developed for the 

two networks. 

Spammers are difficult to detect, especially given the dynamic nature of social networks, where 

members' activity and contacts change frequently. Furthermore, the situation is exacerbated by the 

massive volume of data supplied by users. A large number of systems for automatic spam detection 

employing machine learning techniques depending on binary classification have been developed by 

the research community. The behavioral differences between legitimate users and spammers are used 

to inform the design of spam detection methods in general. The essential principle, as demonstrated 

by previous research, is that spammer activity appears abnormal when compared to typical user 

behavior. 

In the present method, spammers are detected by Summaries with Super nodes, Super edges, and 

Corrections(SSSC). This method uses the Neo4j database which is a Property Graph Model (PGM). A 

property graph is a directed labeled multigraph with the special trait that each node or edge could 

maintain a collection (which could be empty) of property-value pairs. Nodes represent entities, edges 

represent relationships between entities, and properties represent specific characteristics of either the 

entity or the relationship from the perspective of data modeling. 

Machine learning algorithms, MultiNominal NB is applied before and after summarization to find the 

prediction accuracy. Training and testing of the dataset is done on KNN, Random Forest, Logistic 

Regression, Decision Tree, Gradient Boosting and Linear SVC algorithms. 

The paper is divided into five sections. The second section discusses the related works to graph 

summarization that are in the literature. The third section discusses the graph summarization method 

used in this research. The evaluation and experimental results are discussed in fourth section and the 

fifth section concludes the findings. 

 

II. RELATED WORKS 

Some of the most recently suggested summarization algorithms are briefly explained to provide an 

overview of the extent of the topic in question. When Navlakha and colleagues [5] proposed a summary 

technique in 2008, they said that graph compression is accomplished by grouping together into super-

nodes, a collection of closely related nodes and constructing amongst all the pair of super nodes, a 

super-edge. Based on the MDL1 concept, it attempts to design a compression graph with the lowest 

possible representation cost. 

This was accomplished through the development of two iterative algorithms, GREEDY & 

RANDOMIZED. When performing each stage, the GREEDY algorithm determines which pair of 

nodes is the best candidate for merging depending on the given cost decrease. Inevitably, the 

algorithm's execution time is exceedingly high. Authors have presented a RANDOM-IZED algorithm 

in order to minimise the running duration of the programme (Navlakha et al.). In contrast to the 

GREEDY algorithm, 2 merging nodes are chosen at random in this algorithm. 

For the purpose of grouping nodes and building summary, Tian et al. [6] presented a summarization 

approach that included two procedures of summarization known as k-SNAP and SNAP2, both of 

which were introduced in 2008. In the case of attributed graphs, this summarization approach has been 

presented. According to Tian et al., relation compatible grouping and attribute compatible
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grouping are two types of attribute compatible grouping. Additionally, they enhanced the SNAP 

procedure by providing k-SNAP, in which of the resulting summary k is the proper size, which is 

determined first by user. 

Zhang et al. [7], in 2009, made two significant improvements to the k-SNAP method. In reality, the k-

SNAP approach has two significant drawbacks. Because users must categorize the attribute values, and 

because there is no criterion for evaluating the quality of the final summary, there are two problems. 

In order to address these shortcomings, the CANAL approach was proposed by Zhang, which 

automatically categorizes attribute values, as well as a criterion for determining the overall quality of 

the summary, as well as a criterion for estimating the quality of the summary. 

OLAP is an open-source framework developed by Chen et al. [11] that allows users to perform OLAP-

like operations on graphs. In order to allow cubes to be formed from graphs depending on 

measurements and dimensions, a new framework known as the OLAP framework has been established. 

The OLAP framework's inherent property is that it automatically generates a summary based on the 

qualities that have been selected and the information that has been provided. 

The data is modelled as a graph database using Neo4J for the purpose of analysing the Panama Papers, 

which revealed a fraud ring operating over offshore firms and was exposed [12]. 

Chen et al. [13] introduced another summarising approach in 2009 for mining frequent patterns, which 

was afterwards adopted by other researchers. 

In order for this strategy to operate, randomised summary graphs must be generated. Because of 

random access time, Chen et al. confirmed that typical pattern mining methods are extremely time- 

consuming and inefficient when applied to huge graphs, as demonstrated by their findings. Instead of 

mining the full disc, they created a summarising method which first makes summaries and afterwards 

mines them, as opposed to mining the actual disc -graphs of residents - and then mining the summaries. 

Using graph summarization, a method has been presented in [14] that assures that the reliability of 

the summary is maintained at an acceptable level. As far as the reconstruction error is concerned, this 

method gives a summary that is as accurate as it is possible. When the summary and original graphs 

are compared, the error is calculated by subtracting their adjacency matrices and multiplying them 

together to get the difference. There is a relationship between graphs, as demonstrated by the authors. 

From the literature it can be seen that there is no graph summarization method for spam detection. The 

graph summarization method, SSSC is used for spam detection which is becoming increasingly 

prevalent in micro blogging sites. 

 

III. GRAPH SUMMERIZATION USING SSSC 

The database community has shown a great deal of interest in the topic of graph summarization. 

 

i. Summerization 

Large graph datasets are common in distinct fields, such as social networking and biological research. 

These types of domains require the usage of graph summarising techniques since they can aid in the 

discovery about the patterns of useful insights concealed within the data that is underlying. Significant 

type of graph summarising is the generation of compact and useful summaries depending on user-

selected associations and node attributes, as well as the ability for users to interactively roll- up or drill-

down to traverse among summaries having varying levels of detail.
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The use of graph summarising techniques is essential for understanding the underlying properties of 

big graphs [3, 4]. However, the majority of the available graph summarising algorithms are statistical 

in nature (they investigate statistics likehop-plots, degree distributions, and clustering[27] (coeficients, 

among others). These statistical tools are extremely valuable, but it is difficult to maintain control over 

the resolutions of the summaries. A simple statistical approach is used to describe the characteristics 

of graphs in most existing summarization methods; for example, When investigating the property of 

graphs which is scale-free, researchers plot degree distributions; when investigating the small world 

effect, researchers use hop-plots; and when measuring the "clumpiness" of huge graphs, researchers 

employ clustering coeficients. It is possible to make use of the summaries provided by the given 

methods; but, they provide minimal data and can be tough to comprehend and manipulate. It is also 

possible to gain an understanding of the properties of huge graphs by using methods that mine graphs 

for recurring patterns. 

The given algorithms, on the other hand, typically return a high number of results, which might be 

overwhelming to the user. Community structures (dense subgraphs) in big networks have been 

discovered through the use of graph partitioning algorithms, which has allowed researchers to detect 

community patterns in vast networks. In contrast, the community recognition algorithm is based solely 

on the connectivities of nodes, with no consideration given to their qualities. Visualizing huge graphs 

can be difficult due to the fact that they are difficult to visualise using graph sketching techniques. It 

is necessary to provide consumers with a more regulated and intuitive technique of summarising 

graphics. User-friendly properties and relationships should be available for selection in the summary 

technique [28, 2], which should subsequently utilize the given aspects to provide concise as well as 

useful summaries. Aside from that, users must be able to choose how the generated summaries are 

shown and "drill-down" or "roll-up" the information, in a manner similar to how OLAP-style 

aggregation techniques are used in usual database systems to aggregate  information. It is possible to 

construct considerably more compact and informative graphs by using Graph Summarization. These 

graphs will summarise the high-level structure properties of the original graph as well as the prominent 

interactions between groups of nodes. For each node in the summary graph, there are links between 

related subsets of nodes in the original network, and for every edge in the summary graph, there are 

connections between related subsets of nodes in the original network. 

 

iii. Graph Summarization 

Summaries with Super nodes, Super edges, and Corrections (SSSC) is used for graph summarization. 

In the summarising approach, which is defined as the compression of data into a meaningful 

representation, the notion of summary graph serves as the conceptual underpinning. Due to the fact 

that it is suitable to an interactive querying strategy, this method is quite unique in that it allows users 

to modify the summary depending on node qualities and associations that they choose. Users can also 

adjust the resolutions of the resultant summaries [4], which can be used together along with an intuitive 

"drill-down" or "roll-up" paradigm to travel between summaries of varying resolutions [5– 7]. This 

final element of roll-up or drill-down capabilities is influenced by the OLAP-style aggregation 

processes that are commonly employed in regular database systems to gather information.
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a. Graph and summary representation and definitions 

A graph, G = (V,E ), is a set of vertices, V, and a set of edges, E. Edges are represented as (u,v), where 

u,v∈ V. If we were to represent Property Graph Model, data as a graph, subjects and objects would be 

nodes, and there would be a directed edge from subject to object for each triple. The edge would be 

annotated with the predicate value. Notably, vertices could also have multiple edges between each 

other. For our purposes, however, we only consider undirected, unannotated graphs, and so we simplify 

the PGM data to fit this kind of graph. 

A graph summary of graph G = (V,E), is denoted by GS = (S, C). The summary graph, S = (VS , ES,) 

is a collection of supernodes, VS, which contain original nodes in V, a collection of superedges, ES, 

and a collection of corrections, C. A superedge in a summary connects two supernodes. Asuperedge 

represents that an edge between every original node contained by the two connected supernodes is also 

connected in the original graph, G. However, a summary may have superedges that represent some 

edges between original nodes that do not actually exist in the original data. If this is the case, we must 

record that such edges do not actually exist in the original data by adding appropriate corrections to C. 

For instance, suppose s,t∈ V, S,T ∈ VS, s ∈ S, t ∈ T, (S,T) ∈ ES, and (s,t) ¬∈ E. Thus, according to 

the summary, s and t are connected originally, but this is actually not true. We would fix this by adding 

the correction (-, s, t) to C. Corrections are negative when representing the subtraction of an edge 

represented by the summary which is not actually in the original data. Corrections may also be positive 

when an edge is not represented by the summary that exists in the original data. 

In Figure 1, there is an example of a SSSC representation of a small graph. The original nodes b and 

c are merged into super node w. Notice how w has a self-loop because b and c are connected in the 

original graph. Similarly, original nodes h and g are merged into super node y, and original nodes d, 

e, and f are merged into super node z. Original node a is simply assigned super node x, which only 

contains a. Notice how super edges can represent the majority of the original edges, but the edge (a, 

e) must be added as a correction because no super edge represents it. Also, the edge (g, d) is represented 

by the super edge (y, z), but (g, d) is not present in the original graph, so a negative correction must be 

added to the correction set. 

 

 

Figure 1 [1] A summary produced by merging nodes with the same neighbors, allowing for 

corrections.
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b. Summary cost, compression ratio, and MDL 

The cost of a summary is defined in [1], and uses MDL (Minimum Description Length) principle for 

its justification. If the theory and data are encoded using MDL, the optimum theory to deduce from a 

given dataset is one that minimises both their sizes [1]. In our graph summarization, we can 

conceptualize summary graph S to be our theory, and the corrections C to be our data encoded in terms 

of the theory. Therefore, [1] declares the best summary S to be the one which minimizes the storage 

cost of S and C. This cost includes the cost of storing super edges, corrections, and mappings from 

original nodes to super nodes. Note that the mappings from original nodes from V to the super nodes 

in VS, should cost roughly the same regardless of the summary, so we can ignore the cost of the 

mappings in the summary cost we try to minimize. Assuming the cost of storing a super edge and the 

cost of a correction is roughly the same, we are left with a relative cost of a summary to be the sum of 

the number of super edges and the number of corrections. 

Cost(GS) = |ES| + |C| 

[1] also states that we can ignore the cost of the mappings because they will generally be small 

compared to the storage costs ES and C. However, for our use of summarizing data, theoriginal vertices 

are typically URIs stored as strings, which do not have negligible storage costs, especially when super 

nodes can be represented integers, which are much cheaper than long URI strings. Therefore, in this 

paper, we make a distinction between the theoretical cost presented in [1], or the storage cost without 

the cost of mappings, and the implemented cost, or the storage cost in our implementation which 

includes mappings. 

Finally, notice that the original graph can be represented as a summary where every supernode just 

contains one original node, and there are no corrections. Then, the theoretical cost of a graph G is just 

the number of edges |E |. Therefore, we can calculate a theoretical compression ratio of a summary to 

be Compression Ratio(GS,G) = Cost(GS) / |E | 

Since the goal is to minimize Cost(GS), it is important to note that, given a VS, there is exactly one 

ES and exactly one C which minimizes Cost(GS). This is because, if we look at pairs of super nodes 

one at a time, we can easily determine whether or not a super edge should exist between those two 

nodes, using the cost of a super edge as our decision criteria. If u,v∈VS, let ℿuv be the set of all pairs 

(a,b) where a ∈ u, and b ∈ v (Note that | ℿuv | = |u| * |v|), and let Auv⊆ ℿuv be the set of edges which 

actually exist in the original graph. Then, the cost of having a super edge between u and v would be 

|ℿuv | - |Auv | + 1 because storing the super edge adds a cost of 1, and we would need a negative 

correction for all |ℿuv |- |Auv| edges that do not exist in the original graph. On the other hand, the cost 

of not having a super edge between u and v would be |Auv | because we would need a positive correction 

for each edge in the original graph. Finally, we can decide whether or not (u,v) should exist in ES 

based on which option has the lower cost. 

 

c. Edge representation Cost, Supernode Cost, and Reduced Cost 

As discussed previously, the cost of representing the original edges between two super nodes, u and 

v, can be calculated deterministically based on |ℿuv |, the number of possible edges represented, and 

|Auv |, the number of edges between nodes in u and v which are present in the original graph. Since 

we will be choosing whether or not to include a super edge between u and v based on which option 

has a lower cost, we can denote the cost of the representing the original edges between u and v as 

Cost(u,v) = cuv = min(|ℿuv | - |Auv | + 1, |Auv |) 
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Furthermore, we can denote the cost of a super node, u, to be the sum of the cost of all its related edges 

Cost(u) = cu = ∑ 𝑐𝑢𝑖𝑖∈𝑉𝑆 

 

Note that the calculation of this cost in implementation need not actually iterate over all super nodes 

if we already know the set of super nodes for which there is at least one original connection to u; all 

nodes not in this set would simply add zero to the cost of u. 

Finally, with the cost of a node defined, we can calculate the reduced cost of merging nodes. If we 

wanted to merge two super nodes, u and v, into one super node, w, we can easily calculate how much 

this merge would contribute to the lowering the overall summary cost: it would be the cost of the 

original super nodes minus the cost of the new super node, 𝑐𝑢 + 𝑐𝑣 − 𝑐𝑤. As long as this sum is 

positive, merging u and v would reduce the overall summary cost. In our definition of reduced cost, 

we also normalize this value. The purpose behind this is to try to avoid suboptimal local minima in 

summary costs, particularly if a greedy approach is being used. For instance, if we are trying to find 

the “best” merge for super node u, we may greedily pick the node which has the highest absolute 

reduced cost. However, this approach favors merges which may be inefficient despite a high absolute 

cost, when a more efficient (higher normalized reduced cost) merge may be present. 

Therefore, it is important to use the normalized reduced cost, which we refer to as reduced cost from 

now on, when making decisions greedily. So, we define a reduced cost value of 

𝑠(𝑢,𝑣) =𝑐𝑢 + 𝑐𝑣 − 𝑐𝑤𝑐𝑢 + 𝑐𝑣 

Note that this metric has a maximum value of 0.5, which would be the case if u and v had identical 

sets of neighbors and no corrections. This metric does not have a general lower bound, but any pair 

of nodes which have a non-positive reduced cost will not benefit the overall summary cost by being 

merged. 

The algorithm for the graph summarization process is given. The algorithm represents the process that 

is taking place in graph summarization. 

Algorithm: 

Input: - T[i]=Node Details Tabular Data and Its G[i]=Neo4j Graph 

Output: - ST[i]=Summery Graph Labeled Node Links in Tabular Format 

SSSC (T[i],G[i]) 

1 Appling Node_ID based on Data Subgraph with its (V(vertex),E(edges)) and Start Random 

Walk Queue based on Node Links 

2 Traversing Nodes based on S,T ∈V, S,T ∈VS, s ∈S, t ∈T, (S,T) ∈ES, and (S,T) ¬∈E 

3 Determine Super edges based on Cost of Traversing b/w nodes through `Cost(GS) = |ES| + |S| 

+ 

|C(correlation)|` and Minimal cost `A[Gs]=Compression Ratio (GS, Gv) = Cost(GS) / |E | ` with 

the help of FFCM() 

4 Determine Super nodes „u‟ based on Cost representing the original edges between two nodes, 

„Cost(u,v) = cuv= min(|ℿuv | - |Auv| + 1, |Auv|)‟

 and selecting the  super node 

„(𝑢,𝑣)=(𝑐𝑢+𝑐𝑣−𝑐𝑤)/𝑐𝑢+𝑐𝑣‟, and Correlation |C| through RWFB(). 

5 Summarize(G) 

a. GS ← initialize_summary(G) 
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b. unvisited ← initialize_unvisited(GS ) 

c. while unvisited is not empty 

d. seed ← pick_seed_node(unvisited) 

e. merge_candidates ← get_merge_candidates(seed) 

f. to_merge_with_seed ← get_best_merge(merge_candidates, seed ) 

g. new_supernode ←merge_supernodes(seed, to_merge_with_seed ) 

h. update_unvisited(unvisited, seed, to_merge_with_seed, new_supernode ) 

i. put_edges_in_summary (G, GS ) 

j. return GS 

6 Based on Summaries Graph Label the Super edge/Super node and Links on Tabular Data with 

the help of node_id through SB(). 

7 RETURN Summery Graph Labeled Node Links in Tabular Format 

 

IV. METHODOLOGY 

The steps used in the proposed research can be represented as a flowchart and algorithm. The 

flowchart is represented in Fig. 2. 

 

Fig. 2(a) Flowchart representing the steps involved in the proposed research 
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Figure 2(b): Flowchart for the representation of the process in the proposed research 

 

Step 1: The datasets are combined and merged as one dataset. Divide dataset into train test split. Import 

KNN, Logistic Regression, Decision Tree, Random Forrest, Gradient Boosting, Linear SVC classifier 

algorithms. Apply train test data to all the classifiers. Save Accuracy and Execution time of Each 

Classifier 

Step 2: Connect Neo4j Database. Run Quarry‟s to create the Graph Database based on the Data set‟s 

Spammer/Non-Spammer Classification in table. Create all Graphs in Neo4j and also save it in Tabular 

form 

Step 3: Apply SSSC algorithm to created Graph Database. Label all super node, super edges and 

corelations on the graph‟s respective table as spammer/nons pammer. Categories Spammer/ Non- 

Spammer Data based on the Labeled Noes/Edges. Make a new dataset based on their spammer/non 

spammer categorization 

Step 4: Divide Summarize Dataset into train test split. Import KNN, Logistic Regression, Decision 

Tree, Random Forrest, Gradient Boosting, Linear SVC classifier algorithm. Apply train test data(after 

Summarization) to all the classifiers. Save and compare Accuracy and Execution time of Each 

Classifier. Use best classifier from comparison and find Mean Square error and mean test score. Use 

Multinominal NB Classifier to classify the mean test score and find the accuracy through MNB. 
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V. EVALUATION AND EXPERIMENTAL RESULTS 

i. Data set used: 

The data set used is from twitter. The data in the twitter dataset consists of both spam data and non- 

spam data. Both spam and non-spam data are considered. 220000 entries were considered in which the 

attributes are given in Table. 1.This dataset from twitter is used and Neo4j graph database is applied 

to the dataset. Graph summarization is applied by using super nodes, super edges and corrections. 

Machine learning algorithms are used before and after summarization is done. 

 

Table 1: All Attributes of Datasets 

account_age 0 no_follower 0 

no_following 0 no_user favourites 0 

no_lists 0 no_tweets 0 

no_retweets 0 no_hashtag 0 

no_user mention 0 no_urls 0 

no_char 0 no_digits 0 

class 0  

 

ii. Identification of spam: 

Identify and prevent spam as it occurs during the execution process: It is necessary to do real-time link 

analysis on an interconnected dataset and find out the amount of spam data that are present there. 

The Node ID compilation for spam detection in the summaries data is given in Table. 2 and the ratio 

of spam and non-spam data is given in Figure. 3. The spam detection has an accuracy score of 94.427%. 

 

Table 2: Node ID Compilation for Spam Detection in the Summaries data 
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(a)  

 

Figure 3: Spam/Non Spam Ratio 

 

iii. Neo4j Graph for all queries 

The graph database that was considered for this research is the Neo4j database. Neo4j is the world's 

most popular open source Graph Database, and it was created utilising Java technology to achieve this 

position. It has a great degree of scalability and is schema-free (NoSQL).In its role as native graph 

database, Neo4j distinguishes itself by executing the property graph model in an efficient manner way 

to the bottom to the storage level [1]. Consequently, the data is saved exactly as it appears on the 

whiteboard, as well as the database makes extensive use of pointers to explore and navigate the graph. 

[15]. 

 

 
 

 (b) 
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Figure 4: (a) Non-spammer representation of data attributes and (b) spammer representation 

for one of the data attributes of class relations (Account age) 

 

iv. Summaries with Super nodes, Super edges and Categories (SSSC) 

SSSC algorithms were initially studied by the authors of [19]. They proposed a greedy and randomised 

method for SSSC. According to the Minimum Description Length principle, which states that the best 

theory to infer from a set of data is the theory that has the least amount of data when encoded using 

the theory of the SSSC summary model which will discussed, and then supported this proposal with 

evidence from previous research. We can reduce the model's cost by defining the theory's size as a 

graph summary and the data it contains as a collection of adjustments; this allows us to discover the 

"best" model's summary or compression. The detailed representation of the SSSC model is given in 

Figure. 3. 

The data is first fetched after feature selection. It is first tested if the node is available and then graph 

summarization using SSSC takes place. 

 

v. Machine learning algorithm for finding the accuracy of graph summarization 

It is the Multinomial Nave Bayes Classifier (MNB) that has been used in this implementation, which 

is a modified form of the Nave Bayes Classifier. MNB is also a probabilistic strategy that is comparable 

to Nave Bayes. MNB is a text document analysis tool that is specifically developed to compute the 

frequency of occurrence of each word. 

In general, the Naive Bayes (NB) algorithm works on the conditional probability (it takes into account 

the conditional independence of the features), whereas the Multinomial Naive Bayes algorithm works 

on the multinomial distribution (it takes into account the conditional independence of the features). 

The multinomial Nave Bayes classifier takes into account the fact that each phrase appears several 

times. The MNB method is combined with the K-Means algorithm to obtain better accuracy. 

The K-Means algorithm, which is based on dividing [4] [5], is a type of cluster algorithm developed 

by J.B.Mac Queen. Unsupervised algorithms, such as this one, are commonly employed in data mining 

and pattern recognition applications. The square-error and error criterion are the foundations of this 

technique, which is aimed at reducing the cluster performance index to the bare minimum. For 
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the purpose of achieving the best possible result, this algorithm attempts to discover K divisions that 

satisfy a certain requirement. To begin with, select some dots to represent the initial cluster focal points 

(typically, we choose the first K sample dots of income to represent the initial cluster focal point); 

second, gather the remaining sample dots to their focal points in accordance with the criterion of 

minimum distance; third, obtain the initial classification; and if the classification is unreasonable, 

modify it (calculate each cluster focal point again); and finally, iterate repeatedly until we obtain a 

satisfactory classification. The K-Means algorithm, which is based on division, is a type of cluster 

algorithm that has the advantages of being quick, efficient, and timely. This method, on the other hand, 

is very dependent on the initial dots and the differences in initial sample selection, which always results 

in varied outputs. Furthermore, the gradient approach is always used to obtain the extremum in this 

algorithm based on the goal function. When using the gradient method, the direction of search is 

always along the direction in which energy decreases. This results in the fact that if the initial cluster 

focal point is not appropriate, the entire algorithm will easily sink into the local minimum point, 

resulting in the fact that the initial cluster focal point is not appropriate. 

When measuring the performance of a classification model, a confusion matrix, NxN is employed, 

where N is the number of target classes. With this matrix, you may compare real target values with the 

values predicted by the machine learning model. Fig. 5 depicts a confusion matrix for the number N = 

2, with the following entries having the following meanings: 

• a is the number of correct negative predictions; 

• b is the number of incorrect positive predictions; 

• c is the number of incorrect negative predictions; and 

• d is the number of correct positive predictions. This matrix can be used to calculate the 

classification error and the prediction accuracy, which are as follows: 

 

Accuracy =   a+d 

a+b+c+d 

Error =    b+c 

a+b+c+d 
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Fig. 5: Confusion Matrix of Multi Nominal NB Classifier to represents its accuracy 

 

vi. Comparison of graphs using machine learning 

The different machine learning algorithms such as Logistic Regression, K-NN Classifier, Decision 

Tree Classifier, Random Forest Classifier, Gradient Boosting Classifier and Linear SVC are used for 

training and testing the graphs. The accuracy of each algorithms is also calculated. The time taken for 

training the data, testing the data and the accuracy score is given in Table. 3. The time taken is 

represented as a histogram in Figure 4 and the accuracy is represented in Figure 5. 

Accuracy is measured by the number of correctly classified examples. When you run tests, you can 

use a classifier to generate hypothesized class labels for each example. Every test example has a guess 

that is either correct or incorrect. The accuracy of your classifier may be calculated by simply counting 

the number of correct judgments made by your classifier and dividing the total number of test cases 

by the number of correct decisions. 

 

The accuracy of the classifiers are calculated by using the formula: 

Accuracy = 
1𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 +4𝑡h 𝑖𝑛𝑑𝑒𝑥 

(𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙 𝑙 𝑖𝑛𝑑𝑒𝑥 )𝑟𝑜𝑢𝑛𝑑 𝑜𝑓 2 𝑑𝑖𝑔𝑖𝑡𝑠 

 

The various classifiers are discussed below: 

Logistic Regression: Logistic regression is a widely used method for predicting a categorical answer 

in a variety of situations. Generalized Linear models (GLMs) are a subset of Generalized Linear 

models which predicts the likelihood of different outcomes. 

 

K-NN Classifier: This technique is an instance-based learning method that classifies items based on 

the k training examples that are the closest to each other in the resource space, as shown in the figure 

below. 

 

Decision Tree Classifier: Regression and classification techniques are used in decision tree classifier. 
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When solving a problem, a decision tree is used whereby every leaf node correlates to a class label 

while attributes is expressed on the internal node of the tree, the problem is solved using a tree 

representation. 

 

Random Forest Classifier: The RF method is based on the building of many decision trees, which 

are then combined to produce a decision that is more accurate and consistent. 

 

Gradient Boosting Classifier: Gradient-boosted trees (GBTs) are   a   common   regression and 

classification method that employs ensembles of decision trees to do classification and regression. 

 

Linear SVC: Using a support vector machine, a hyperplane or series of hyperplanes is constructed in 

a high-dimensional space (or an infinite-dimensional space), which can then be utilised for regression, 

classification, and similar tasks. 

 

Table 3: Comparison of various algorithms 

Algorithm Time taken for 

training data 

Time taken for 

testing data 

Accuracy Score 

Logistic Regression 6.13 0.01 91.036 

K-NN Classifier 2.99 m 18.82 s 91.036 

Decision Tree 

Classifier 

5.2 s 0.02 s 97.471 

Random Forest 82.44 s 3.74 s 99.012 

Classifier    

Gradient Boosting 

Classifier 

90.71 s 0.33 s 98.068 

Linear SVC 76.59 s 0.01 s 52.195 

Multinominal NB 0.55 s 1.5 s 96.64 
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Figure 6: Graph Comparison (based on time) of all above classifier algorithm 

 

Figure 7: Graph Comparison (based on accuracy) of all above classifier algorithm 

 

vii. Summarization 

Summarization technique is applied to the graph. Graph summarization is done and the training score 

through various classifiers is calculated after Summerization. This is represented in Table. 4. The 

accuracy score of the graphs after summarization is given in Table.5. The training score is 

represented in Figure 6 and the accuracy score is given in Figure 7 of the various classifier after 

summarization. It can be seen that SVM (Linear) classifier gives the best accuracy of 59%. 
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Table. 4: Training Score Through Various Classifier after Summerization 

 

Table. 5: Accuracy score after summarization 

Figure 7: Accuracy Comp. Graph of all classifier after summarization 
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Figure 8: Time Count Comp. Graph of all classifier after summarization 

 

V. Conclusion 

In this era of digital communication the popularity of social networking sites increasing in every second 

and with this spam accounts are also on the rise. In contrast to existing work, in this paper we present 

a novel graph-based approach for spam detection. As the size of data is large, due to which analysis of 

spam became complex and to optimize this issue summarization of the graph has been performed using 

SSSC algorithm. The problem of graph summarization has practical applications involving 

visualization and graph compression. As graph structured databases become popular and large, 

summarizing and compressing graph structured databases can become more and more useful. The 

usefulness and efficiency of our proposed strategy were demonstrated by our experimental results. The 

accuracy of the graph is considered before and after Graph Summerization using Multi Nominal NB. 

The accuracy of the graph is compared with other machine learning algorithms. Various algorithms 

are considered and it is found that Multi Nominal NB gives the lowest training time and the highest 

accuracy. 
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